Rectangular mixed elements for elasticity with weakly imposed symmetry condition

نویسنده

  • Gerard Awanou
چکیده

We present new rectangular mixed finite elements for linear elasticity. The approach is based on a modification of the Hellinger-Reissner functional in which the symmetry of the stress field is enforced weakly through the introduction of a Lagrange multiplier. The elements are analogues of the lowest order elements described in Arnold, Falk and Winther [ Mixed finite element methods for linear elasticity with weakly imposed symmetry. Mathematics of Computation 76 (2007), pp. 1699–1723]. Piecewise constants are used to approximate the displacement and the rotation. The first order BDM elements are used to approximate each row of the stress field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed finite element methods for linear elasticity with weakly imposed symmetry

In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger–Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been...

متن کامل

Mixed Methods for Elastodynamics with Weak Symmetry

We analyze the application to elastodynamic problems of mixed finite element methods for elasticity with weakly imposed symmetry of stress. Our approach leads to a semidiscrete method which consists of a system of ordinary differential equations without algebraic constraints. Our error analysis, which is based on a new elliptic projection operator, applies to several mixed finite element spaces...

متن کامل

A Second Elasticity Element Using the Matrix Bubble

We presented a family of finite elements that use a polynomial space augmented by certain matrix bubbles in [Math. Comp., 79 (2010), 1331–1349]. In this sequel, we exhibit a second family of elements that use the same matrix bubble. This second element uses a stress space smaller than the first, while maintaining the same space for rotations (which are the Lagrange multipliers corresponding to ...

متن کامل

Differential Complexes and Stability of Finite Element Methods Ii: the Elasticity Complex

A close connection between the ordinary de Rham complex and a corresponding elasticity complex is utilized to derive new mixed finite element methods for linear elasticity. For a formulation with weakly imposed symmetry, this approach leads to methods which are simpler than those previously obtained. For example, we construct stable discretizations which use only piecewise linear elements to ap...

متن کامل

Least-Squares Methods for Elasticity with Weakly Imposed Symmetry

The related physical equations of linear elasticity are the equilibrium equation and the constitutive equation, which expresses a relation between the stress and strain tensors. This is a first-order partial differential system such that a least squares method based on a stress-displacement formulation can be used whose corresponding finite element approximation does not preserve the symmetry o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013